Устройства плавного пуска Grandrive ASF

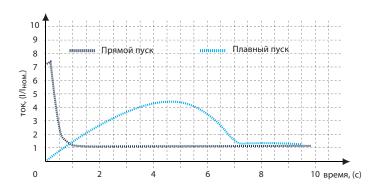
- Номинальный ток до 1800 А.
- Номинальное напряжение до 13,8 кВ.

Электродвигатели переменного тока широко применяются в приводах насосов, вентиляторов, компрессоров, конвейеров и другого оборудования. Приводные механизмы в силу конструкции моторов подвергаются нежелательным перегрузкам из-за бросков токов, в разы превышающих номинальное значение, что приводит к таким негативным последствиям, как:

- механические удары и, как следствие, преждевременный износ муфт, редукторов, подшипников и других механических частей электропривода.
- разрушение изоляции, межвитковые короткие замыкания. Длительность негативного воздействия при пуске электродвигателя напрямую от сети зависит от момента сопротивления на его валу и при частых и тяжелых пусках приводит к превышению допустимого уровня температуры обмоток, снижению электрической прочности изоляции и, соответственно, к межвитковым коротким замыканиям. Негативное влияние на изоляцию обмоток и последующее уменьшение срока службы электродвигателя, приводит к необходимости его замены, что может вызывать простой производства.
- падение напряжения в питающей сети, что может негативно влиять на других потребителей и сказаться на технологическом процессе в целом.

Современным техническим решением вышеперечисленных проблем является применение устройств плавного пуска Grandrive ASF.

Изменяя выходное напряжение с заданным темпом, двигатель разгоняется/тормозится плавно и обеспечивает безопасный пуск/ останов механизма. После того, как напряжение достигает номинального значения посредством байпасного контактора происходит автоматическое переключение на питание электродвигателя от сети, что повышает общую надежность системы, т. к. исключается возможность перегрева тиристоров и выход оборудования


Гибкие функции контроля и различные кривые разгона для конкретных применений позволяют отказаться от поиска компромиссных решений. Высокий уровень оптоволоконной изоляции сции низкого напряжения обеспечивает надежность и безопасность работы.

Применение устройств плавного пуска позволит сократить затраты на механическую трансмиссию, на техническое обслуживание и ремонт, а также снизить электрические нагрузки на двигатель.

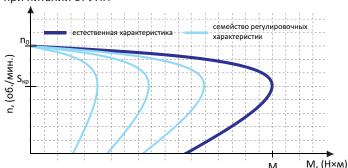
Функция «Низковольтный тест»

Тестовое напряжение: 230–690 В.

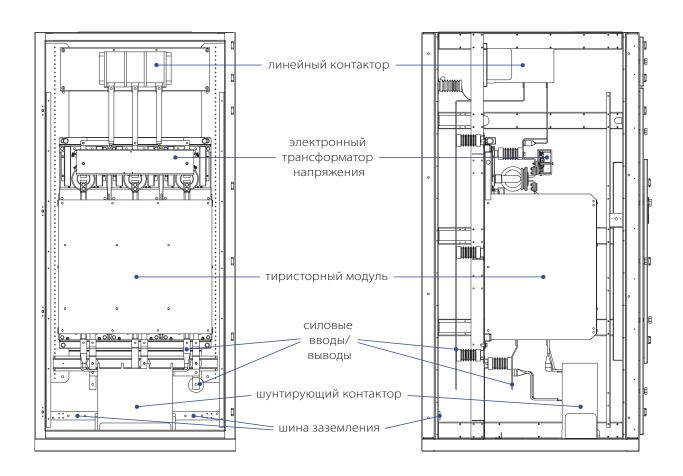
Диаграмма пуска асинхронного двигателя

Функция «Бросок момента»

- Длительность импульса: 0-10 с.
- Уровень импульса: 70–400 % от I_н двигателя (70–700 %*).
- * Дополнительная настройка.


Пуск/останов с контролем напряжения

- 6 встроенных кривых пуска/останова.
- Длительность разгона: 1–30 с (1–90 с*).
- Длительность останова: 0–30 с (0–90 с*).
- Ток двигателя: 33–100 % от I_H УПП.
- Начальное напряжение: 10−50 % от U_H УПП (5−85 %*).
- Ограничение по току: 100–400 % от I_H двигателя (100–700 %*).
- * Дополнительная настройка.


Функции защиты

- От перегрузки/недогрузки механизма.
- От дисбаланса фаз.
- От перенапряжения.
- От просадки напряжения.
- От превышения заданного числа пусков в час.
- От обрыва фазы на входе/выходе.
- От замыкания на землю.
- От пробоя тиристоров.
- От перегрева радиаторов.
- Запрет на пуск после возникновения ошибки.
- Предупреждение о превышении длительности пуска.
- Обнаружение неисправности байпас контактора.

Механические характеристики асинхронного двигателя при питании от УПП

Состав УПП Grandrive ASF

Ср

Cd

плата связи Profibus

плата связи Device net

Модификации

U _{ном} *, (кВ)	I _{HOM} **, (A)	P _{HOM} , (KBT)
6	70	670
	140	1340
	250	2390
	300	2870
	400	3820
	500	4780
	600	5736
10	70	1020
	140	2040
	250	3650
	300	4300
	400	5800
	500	7250
	600	8700
11	70	1100
	140	2200
	250	4000
	300	4800
	400	6400
	500	8000
	600	9600

^{*} ПЧ на номинальное напряжение 3,3; 4,16; 13,8 кВ — по запросу.

^{**} ПЧ на номинальный ток более 900 А — по запросу.